

Status of the CMS Experiment

LATBauerdick/Fermilab

Fermilab PAC Meeting Oct 20, 2006

LATBauerdick/Fermilab Fermilab PAC Meeting Oct 20, 2006

Outline

- ◆ Progress on CMS detector components
 - ★ in particular U.S. deliverables
- ◆ Progress on global CMS
 - ★ Magnet Test and Cosmic Challenge (MTCC)
 - ★ Software and Computing
- ◆ Evolution of CMS Organization

HCAL Forward (HF)

- → HF moved into SX5 this summer.
 - ★ Waiting for infrastructure to be ready above ground before lowering is scheduled – now in October

TOB - 100m2 Silicon

- ◆ The Tracker Outer Barrel is completed, tested, shipped to CERN
 - ★ for integration and commissioning in the Tracker Integration Facility

FPIX - Coming Now in 2007

- ★ New plan for Pixels is to install a "slice" for the 2007 run to gain crucial operational experience thus advancing the schedule for Pixel commissioning with interactions.
- ★ FPIX project was baselined in Sep
 - ◆ Cost To Completion \$4.0M\$, Contingency \$2.6M

Tracker Integration Status

- ★ The Tracker Integration Facility is fully operational at CERN
- ★ TOB, TIB and TEC will be inside support tube by end 2006
- ★ Jan-May 2007:Commissioning TK in TIF (in steps of 2.5M channels)
- ★ Jun 2007: Transport Tracker fully commissioned to P5

- ★ Pixel modules are in production (15% done)
- ★ Pixel sector delivered to CERN in Dec 2006 for integration in TIF before installation into CMS in Sep 2007
- ★ Full Pixel detector ready for installation in Nov 2007

Tracker Rigged into Magnet

◆ The Tracker built elements of the final (1% of total) detector in order to get operational experience in the MTCC.

★ The volume was full sized to do a practice insertion.

ECAL Schedule

◆ Barrel (EB)

- ★ EB+ installation into HB+ starts in November
 - → all 18 SuperModules are available
- ★ EB— installation follows on surface until January 2007
- ★ Last EB crystal expected end of February
 - ♦ last SuperModule by early May

◆ Endcaps (EE)

- ★ EE crystal production starts in October (China) and March (Russia)
- ★ Aim is to have part of EE1 for pilot run in 2007
- ★ Aim is to have complete EE installed for physics run in 2008

CMS Barrel ready for Magnet Test (July)

Closing CMS the first time (July)

Magnet is ~ 3 GJ

◆ CMS is the world's largest electromagnet — stable working at 4T

Magnet Test and Cosmic Challenge

12

- ★ All Key objectives of MTCC met!
- ★ Test magnet to 4T

★ jointly read out each CMS subsystem with cosmic ray muons.

★ All CMS subsystems logged in global DAQ and synchronized.

★ This is a major milestone on the way to CMS data taking!

★ Muons can be used to cross check HB and HE calibration and to align the muon chambers.

★ events written in re-engineered EventDataModel and reconstructed (and displayed) using new software framework CMSSW

MTCC Data Taking

- ★ Collected > 25 M events in roughly 4 days
- ★ Trigger: barrel (DT, RBC, RPC-TB) and endcap (CSC)
- ★ raw rates between 120 and 200 Hz, data taking efficiency ~ 90%

ME Muons and HB in MTCC

- ◆ All CMS subsystems sync-ed, global data taking w/ 1/8 DAQ slice
 - ★ timing studies, trigger studies, alignment studies, etc done
- ♦ Note CSC tracking, HB and MB data.

MTCC - Tracker Clusters

15

- ◆ Obtained S/N in the expected range
 - ★~ 27 (TIB) ~ 45 (TOB,TEC).
- ◆ Track alignment and fitting are now in progress.

MTCC Data Taking

★ Reconstruction working on the Event Filter (mini) Farm at P5

- ◆ CMSSW version 0.9.0 used on the event filter mini-farm
- software worked from the event filter to visualization on real data taking
- → not only at local level but also at global level (tracker, muon-stand-alone reconstruction...) and in the last days also at global muon level.
- plans for MTCC phase 2: improvements on storage manager, all detectors fully working on the filter farm.

★ All DataQualityMonitoring applications constantly ran offline

- ♦ With 0.5-1 hr delay wrt data taking
- ◆ Online DQM from parasitic online stream from the storage manager ran for most of the field-on period (HCAL, Tracker, CSC), monitoring LTC even in the farm
- ◆ After MTCC phase 1, Muon DT, CSC and tracker integrated in the Filter Farm

★ The Detector Control System was in place during the MTCC

checked voltages, temps, etc.

★ Muon Alignment System tested

very good experience to understand the performance of the alignment system itself, the closing procedure and the yoke behavior under magnetic forces.

LATBauerdick/Fermilab Fermilab PAC Meeting Oct 20, 2006 16

First Data Shifts at the ROC

- ◆ Remote Operations Center at Fermilab
 - ★ place for U.S. people to do remote operations of detector
- ★ Key participant in MTCC monitoring
 - ★ During MTCC, successfully exercised and established a foundation of quasi-online data monitoring and analysis
 - ★ Quasi-realtime data transfers from P5 to CERN-IT and from there to Fermilab Tier-1 and a number of Tier-2/3 centers
 - ★ Automatic and systematic running of event display and various DataQualityMonitoring programs (HCAL, Trigger, Tracker, CSC)
 - ★ Making the results (Histograms) of DQM programs readily and easily available to the sub-detector/DAQ/Trigger experts anywhere, during a run and also for all runs which were taken
- * ROC stood ~ half of all MTCC data and DQM shifts!
- ◆ Construction proceeding for "LHC@FNAL"
 - ★ joint LHC/CMS "Control Room" on Wilson Hall 1st floor

17

MTCC Continues for Commissioning

- ★ Magnet was field mapped with good results
- ★ MTCC Phase II underway
- ★ Underground, MTCC will continue up until LHC beam arrives

"MTCC Phase III" - Cosmics Underground

- Highly energetic muons traversing the detector moreor-less vertically
 - Used in initial phase of commissioning, e.g. to establish coarse synchronization (like in MTCC)
 - Interesting for initial alignment/calibration of
 - (barrel) muon systems, tracker (barrel), barrel HCAL & ECAL,
 (& aligm. system compared to tracking alignement)
 - But: Cosmics are rather "rare" and they
 - are out of time (cannot unambiguously associated with clock; timing different e.g. for upper vs. lower detector sectors), and
 - do not (all) point to IP.

Preliminary rates for $p_T^{\mu} > 10$ GeV from simulation (use these numbers with care! Efficiency (timing and μ -direction) not yet applied & rates probably <u>much</u> lower; simulation accurate? \rightarrow Needs to be verified)

N _{HIT} ≥1	Rate[Hz]	
CMS tot	~1800	
Muon only	~1800	
calorimeter	~ 700	
tracker	~ 60	

Test Beam 2006 - ECAL+HCAL

19

- ◆ Exercise a "real" HCAL+ECAL calorimetric system
- ◆ a lot of effort was put into TB2006

Very Low Energy (VLE) line is able to give 1 to 9 GeV/c h+, h-, e+ and e-with good rate, a few hundred/spill using a tertiary target (T22). At lower end of the range, particles are mostly electrons. There is a significant muon contamination as well.

Particle ID is accomplished by TOFs, Cerenkovs and muon veto counters.

High energy line covers a momentum range from 10 to 300 GeV/c for hadrons through secondary particle production. For electrons/positrons, the range is 10 to 150 GeV/c.

Reconstructed Calorimeter Response

20

- ★ For the first time have a complete set of low energy data for pions, kaons and (anti)protons for the combined ECAL+HCAL
- ★ These data are essential to correctly estimate the jet response of the CMS calorimeter system.

LATBauerdick/Fermilab Fermilab PAC Meeting Oct 20, 2006

Status of Software and Computing

- ★ "Physics TDR" Vol1 and Vol2 published,
 - → with ~ 200M events simulated, reconstructed and analyzed, for 85 analysis notes
- ★ CMS Software made major progress during this year:
 - create a new framework and event data model CMSSW
 - → acquire ability to read detector with new Framework/EDM (tested in MTCC!)
 - introduce calibration and alignment into CMS software
 - develop and migrate simulation as well as local and global reconstruction SW
 - → sequence of CMSSW releases, with release 1_0 being used in CSA06 Data Challenge
- ★ new Software, Data Management, MC Systems operational: SC4, CSA06
 - some 60M events simulated in preparation of CSA06,
 - → reconstruction running at Tier-0 since 19 days now -- stably, w/ good performance
 - → data transfers to Tier-1 and Tier-2 centers successful, after a lot of commissioning
 - ◆ Grid job success rates of up to 98% 25k Grid jobs/day feasible, goal is 50k/day
- ★ Seven Tier-2 sites in the U.S. commissioned + the Fermilab Tier-1 center have some 30 validated CMS sites worldwide
 - → interoperability between OSG and EGEE is a reality, OSG is funded with \$6M/year
- ★ Data Challenge/End-to-end System Test CSA06 in full swing

LATBauerdick/Fermilab Fermilab PAC Meeting Oct 2

21

CSA06 Data Challenge

- ★ end-to-end test to establish "physics infrastructure" at 25% level of 2008
- ★ Tier-0 running CMSSW reconstruction software smoothly since start of challenge -- >80M events reconstructed
- ★ data transfers to Tier-1 centers, where data sets are being stored
- ★ skimming of analysis datasets at T1, transfer to T2, analysis jobs at T2
- ★ all 7 Tier1s, 24 Tier2s participating

22

LPC - Status

◆ LPC managed to build a strong foundation at Fermilab

- ★ the LPC now has made major contributors to current developments: framework, tracking, Jet, Met, code management,...
- ★ Fermilab support has been and is very strong
- ★ today LPC is one of the best places (if not the best) in terms of software expertise in CMS

Examples for LPC activities

- ★ Six active working groups
 - → Recently added a "Physics group", b, and tau tagging
- ★ Workshops, Schools, Meetings (a few highlights):
 - → Hosted CMS Physics week, CMS Tracker/SW joint workshop,...
 - → Introductory CMS101, J-term, Tutorials on new software
 - ♦ Weekly Physics meetings, MC samples created and maintained
 - → Initiated the first joint FNAL/CERN HCSS, 07 at CERN, 08 back at FNAL

LPC Attractive for US Universities

→ ~50 University Colleagues at LPC Throughout the Summer

LATBauerdick/Fermilab

U.S. CMS Research Program

25

- ◆ U.S. Research Program receiving good marks in August review
 - ★ trust in management and approaches to solve problems
- ◆ DOE/NSF LHC program manager notes the increased pressures on the U.S. CMS program generated by
 - → increase in M&O expenses through increase of U.S. collaborators,
 - additional computing costs,
 - calls for more U.S. contributions from experiments,
 - → a 50% difference in #experimenters b/w U.S. Atlas and U.S. CMS
- ◆ DOE outyear funding guidance provided 5 yrs ago
- ♦ NSF funding plan approved by NSB through FY2011
- ◆ EPP-2101 and P5 Have Spoken: LHC, including its upgrades, is tops!
 - ★ should not be permitted to erode through inflation
- ◆ DOE funding guidance being updated to include a ~3% escalation
- ◆ Joel Butler will take over U.S. Research Program Manager

LATBauerdick/Fermilab PAC Meeting Oct 20, 2006

Fermilab Org Changes

- ◆ Fermilab is forming a CMS Center as part of Research Sector
 - ★ CMS visible on org-char of lab, forming a Fermilab CMS group
 - ◆ Coordinate, support Fermilab scientific staff involved in CMS as a unit
 - ★ collect and manage in one place overall resources for CMS at FNAL
 - matrix-ed work with divisions
 - ★ hosts the LPC, ROC
 - ★ administrative home of Research Program, Program Office etc

Associate Director for Research

Program Planning

Computing

Particle Physics

CMS Center

Astroparticle Center

26

CMS - Reorganization

- ◆ New Spokesperson (Jim Virdee), new organization
 - ★ Executive board will run experiment as a unit, transitioning from federated structure of subcomponents
 - ★ exact structure of and interactions between areas being defined
 - ★ U.S. involved on highest level CMS management

Summary

- ◆ CMS is coming together in terms of components, and as a whole experiment
 - ★ Over the summer, three critical objectives were achieved
 - 1) First closing of the experiment
 - 2) Solenoid tested to the design field of 4 Tesla
 - 3) Cosmic Ray events recorded in all sub-detectors working together
 - → CMS can operate as a single coherent detector
 - CMS can operate as a worldwide and unified collaboration
- ◆ MTCC has been a great success in learning how to operate CMS.
- ◆ TestBeam2006 data set will provide many important checks of the Monte Carlo modeling of CMS.
- ◆ CMS is restructuring to confront data taking and analysis Fermilab is restructuring to place more emphasis on CMS

Backup Slides

29

450 GeV - Calibration Run

Operations' aims:

- Commission essential safety systems
- Commission essential beam instrumentation
- Commission essential hardware systems
- Perform beam based measurements to check:
 - Polarities
 - Aperture
 - Field characteristics
- Establish collisions
- Provide stable two beam operation at 450 GeV
- Interleave collisions with further machine development, in particular, the ramp.

Should provide a firm platform for eventual commissioning to 7 TeV and provide adequate lead time for problem resolution.

2007 machine schedule

31

	Phase	Beam time [days]	Beam
1	First turn	4	1 x Pilot
2	Establish circulating beam	3	1 x Pilot
3	450 GeV – initial	3	1 x Pilot++
4a	450 GeV - consolidation	1-2	1 x Pilot++
4b	450 GeV – system commissioning	2-3	1 x Pilot++
5 a	2 beam operations	1	2 x Pilot++
5b	Collisions	1-2	2 x 1 x 10 ¹¹ →
		16 days	

Given an operational efficiency of 60%, this gives an elapsed time of about 26 days. CAVAET: MACHINE AVAILABILITY

Some opportunities for parallel development and parasitic studies...

450 GeV - Performance

Reasonable	Maximum
1/casoliable	IVIAAIIIIUIII

k _b	43	43	156	156
i _b (10 ¹⁰)	2	4	4	10
β* (m)	11	11	11	11
intensity per beam	8.6 10 ¹¹	1.7 10 ¹²	6.2 10 ¹²	1.6 10 ¹³
beam energy (MJ)	.06	.12	.45	1.1
Luminosity (cm ⁻² s ⁻¹)	2 10 ²⁸	7.2 10 ²⁸	2.6 10 ²⁹	1.6 10 ³⁰
event rate ¹(kHz)	0.4	2.8	10.3	64
W rate ² (per 24h)	0.5	3	11	70
Z rate ³ (per 24h)	0.05	0.3	1.1	7